Function to train an Artificial Hydrocarbon Network (AHN).
fit(Sigma, n, eta, maxIter = 2000)
| Sigma | a list with two data frames. One for the inputs X, and one for the outputs Y. |
|---|---|
| n | number of particles to use. |
| eta | learning rate of the algorithm. Default is |
| maxIter | maximum number of iterations. |
an object of class "ahn" with the following components:
network: structure of the AHN trained.
Yo: original output variable.
Ym: predicted output variable.
eta: learning rate.
minOverallError: minimum error achieved.
variableNames: names of the input variables.
# Create data x <- 2 * runif(1000) - 1; x <- sort(x) y <- (x < 0.1) * (0.05 * runif(100) + atan(pi*x)) + (x >= 0.1 & x < 0.6) * (0.05 * runif(1000) + sin(pi*x)) + (x >= 0.6) * (0.05 * runif(1000) + cos(pi*x)) # Create Sigma list Sigma <- list(X = data.frame(x = x), Y = data.frame(y = y)) # Train AHN ahn <- fit(Sigma, 5, 0.01, 500)